Metamath Proof Explorer


Theorem cdlemg2kq

Description: cdlemg2k with P and Q swapped. TODO: FIX COMMENT. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2j.l = ( le ‘ 𝐾 )
cdlemg2j.j = ( join ‘ 𝐾 )
cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2j.m = ( meet ‘ 𝐾 )
cdlemg2j.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdlemg2kq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) 𝑈 ) )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 cdlemg2j.l = ( le ‘ 𝐾 )
4 cdlemg2j.j = ( join ‘ 𝐾 )
5 cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2j.m = ( meet ‘ 𝐾 )
7 cdlemg2j.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
10 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
11 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝐹𝑇 )
12 eqid ( ( 𝑄 𝑃 ) 𝑊 ) = ( ( 𝑄 𝑃 ) 𝑊 )
13 1 2 3 4 5 6 12 cdlemg2k ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) = ( ( 𝐹𝑄 ) ( ( 𝑄 𝑃 ) 𝑊 ) ) )
14 8 9 10 11 13 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) = ( ( 𝐹𝑄 ) ( ( 𝑄 𝑃 ) 𝑊 ) ) )
15 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝐾 ∈ HL )
16 simp2ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑃𝐴 )
17 3 5 1 2 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐴 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
18 8 11 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
19 simp2rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑄𝐴 )
20 3 5 1 2 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑄𝐴 ) → ( 𝐹𝑄 ) ∈ 𝐴 )
21 8 11 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐹𝑄 ) ∈ 𝐴 )
22 4 5 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑃 ) ∈ 𝐴 ∧ ( 𝐹𝑄 ) ∈ 𝐴 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
23 15 18 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
24 4 5 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
25 15 16 19 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
26 25 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝑃 𝑄 ) 𝑊 ) = ( ( 𝑄 𝑃 ) 𝑊 ) )
27 7 26 syl5eq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑈 = ( ( 𝑄 𝑃 ) 𝑊 ) )
28 27 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑄 ) 𝑈 ) = ( ( 𝐹𝑄 ) ( ( 𝑄 𝑃 ) 𝑊 ) ) )
29 14 23 28 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) 𝑈 ) )