Metamath Proof Explorer


Theorem cdlemg2m

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2j.l = ( le ‘ 𝐾 )
cdlemg2j.j = ( join ‘ 𝐾 )
cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2j.m = ( meet ‘ 𝐾 )
cdlemg2j.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdlemg2m ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) 𝑊 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 cdlemg2j.l = ( le ‘ 𝐾 )
4 cdlemg2j.j = ( join ‘ 𝐾 )
5 cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2j.m = ( meet ‘ 𝐾 )
7 cdlemg2j.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 1 2 3 4 5 6 7 cdlemg2k ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑃 ) 𝑈 ) )
9 8 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) 𝑊 ) = ( ( ( 𝐹𝑃 ) 𝑈 ) 𝑊 ) )
10 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝐹𝑇 )
12 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
14 3 6 13 5 1 2 ltrnmw ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) 𝑊 ) = ( 0. ‘ 𝐾 ) )
15 10 11 12 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) 𝑊 ) = ( 0. ‘ 𝐾 ) )
16 15 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( ( 𝐹𝑃 ) 𝑊 ) 𝑈 ) = ( ( 0. ‘ 𝐾 ) 𝑈 ) )
17 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝐾 ∈ HL )
18 3 5 1 2 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
19 10 11 12 18 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
20 19 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
21 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑊𝐻 )
22 simp2ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑃𝐴 )
23 simp2rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑄𝐴 )
24 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
25 3 4 6 5 1 7 24 cdleme0aa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑈 ∈ ( Base ‘ 𝐾 ) )
26 17 21 22 23 25 syl211anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑈 ∈ ( Base ‘ 𝐾 ) )
27 24 1 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
28 21 27 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
29 17 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝐾 ∈ Lat )
30 24 4 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
31 17 22 23 30 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
32 24 3 6 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
33 29 31 28 32 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
34 7 33 eqbrtrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝑈 𝑊 )
35 24 3 4 6 5 atmod4i2 ( ( 𝐾 ∈ HL ∧ ( ( 𝐹𝑃 ) ∈ 𝐴𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 𝑊 ) → ( ( ( 𝐹𝑃 ) 𝑊 ) 𝑈 ) = ( ( ( 𝐹𝑃 ) 𝑈 ) 𝑊 ) )
36 17 20 26 28 34 35 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( ( 𝐹𝑃 ) 𝑊 ) 𝑈 ) = ( ( ( 𝐹𝑃 ) 𝑈 ) 𝑊 ) )
37 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
38 17 37 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → 𝐾 ∈ OL )
39 24 4 13 olj02 ( ( 𝐾 ∈ OL ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) 𝑈 ) = 𝑈 )
40 38 26 39 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 0. ‘ 𝐾 ) 𝑈 ) = 𝑈 )
41 16 36 40 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( ( 𝐹𝑃 ) 𝑈 ) 𝑊 ) = 𝑈 )
42 9 41 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) 𝑊 ) = 𝑈 )