| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
| 9 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝐾 ∈ HL ) |
| 10 |
|
simp2ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑃 ∈ 𝐴 ) |
| 11 |
|
simp31l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑣 ∈ 𝐴 ) |
| 12 |
|
simp2rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑄 ∈ 𝐴 ) |
| 13 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑊 ∈ 𝐻 ) |
| 14 |
9 13
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 16 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝐹 ∈ 𝑇 ) |
| 17 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
| 18 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 19 |
14 15 16 17 18
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 20 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 21 |
1 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
| 22 |
14 16 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
| 23 |
19 22
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) ) |
| 24 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) |
| 25 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 26 |
25
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ≠ 𝑣 ) |
| 27 |
1 2 4 5
|
lhp2atne |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ 𝑣 ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( 𝑃 ∨ 𝑣 ) ) |
| 28 |
14 20 10 23 24 26 27
|
syl321anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( 𝑃 ∨ 𝑣 ) ) |
| 29 |
28
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑃 ∨ 𝑣 ) ≠ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
| 30 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 31 |
2 3 30 4
|
2atmat0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑣 ) ≠ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 32 |
9 10 11 12 19 29 31
|
syl33anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 33 |
8
|
eleq1i |
⊢ ( 𝑁 ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ) |
| 34 |
8
|
eqeq1i |
⊢ ( 𝑁 = ( 0. ‘ 𝐾 ) ↔ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 35 |
33 34
|
orbi12i |
⊢ ( ( 𝑁 ∈ 𝐴 ∨ 𝑁 = ( 0. ‘ 𝐾 ) ) ↔ ( ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 36 |
32 35
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑁 ∈ 𝐴 ∨ 𝑁 = ( 0. ‘ 𝐾 ) ) ) |