| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg46.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemg46.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
cdlemg46.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
cdlemg46.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ℎ ∈ 𝑇 ) |
| 7 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐹 ∈ 𝑇 ) |
| 8 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( ℎ ∘ 𝐹 ) ∈ 𝑇 ) |
| 9 |
5 6 7 8
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ℎ ∘ 𝐹 ) ∈ 𝑇 ) |
| 10 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐺 ∈ 𝑇 ) |
| 11 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
| 12 |
1 2 3 4
|
cdlemg46 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 13 |
5 7 6 11 12
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 14 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
| 15 |
13 14
|
neeqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
| 16 |
2 3 4
|
cdlemg44 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ℎ ∘ 𝐹 ) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( 𝐺 ∘ ( ℎ ∘ 𝐹 ) ) ) |
| 17 |
5 9 10 15 16
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( 𝐺 ∘ ( ℎ ∘ 𝐹 ) ) ) |
| 18 |
|
coass |
⊢ ( ( 𝐺 ∘ ℎ ) ∘ 𝐹 ) = ( 𝐺 ∘ ( ℎ ∘ 𝐹 ) ) |
| 19 |
17 18
|
eqtr4di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( ( 𝐺 ∘ ℎ ) ∘ 𝐹 ) ) |
| 20 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 21 |
20 14
|
neeqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
| 22 |
2 3 4
|
cdlemg44 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( ℎ ∘ 𝐺 ) = ( 𝐺 ∘ ℎ ) ) |
| 23 |
5 6 10 21 22
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ℎ ∘ 𝐺 ) = ( 𝐺 ∘ ℎ ) ) |
| 24 |
23
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐺 ) ∘ 𝐹 ) = ( ( 𝐺 ∘ ℎ ) ∘ 𝐹 ) ) |
| 25 |
19 24
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( ( ℎ ∘ 𝐺 ) ∘ 𝐹 ) ) |
| 26 |
|
coass |
⊢ ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) |
| 27 |
|
coass |
⊢ ( ( ℎ ∘ 𝐺 ) ∘ 𝐹 ) = ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) |
| 28 |
25 26 27
|
3eqtr3g |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 29 |
28
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) ) |
| 30 |
|
coass |
⊢ ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) |
| 31 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ) → ℎ : 𝐵 –1-1-onto→ 𝐵 ) |
| 32 |
5 6 31
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ℎ : 𝐵 –1-1-onto→ 𝐵 ) |
| 33 |
|
f1ococnv1 |
⊢ ( ℎ : 𝐵 –1-1-onto→ 𝐵 → ( ◡ ℎ ∘ ℎ ) = ( I ↾ 𝐵 ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ℎ ) = ( I ↾ 𝐵 ) ) |
| 35 |
34
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) ) |
| 36 |
30 35
|
eqtr3id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) ) |
| 37 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
| 38 |
5 7 10 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
| 39 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 40 |
5 38 39
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ∘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 41 |
|
f1of |
⊢ ( ( 𝐹 ∘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 42 |
|
fcoi2 |
⊢ ( ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝐹 ∘ 𝐺 ) ) |
| 43 |
40 41 42
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝐹 ∘ 𝐺 ) ) |
| 44 |
36 43
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) = ( 𝐹 ∘ 𝐺 ) ) |
| 45 |
|
coass |
⊢ ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 46 |
34
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 47 |
45 46
|
eqtr3id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 48 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ 𝐹 ) ∈ 𝑇 ) |
| 49 |
5 10 7 48
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ 𝑇 ) |
| 50 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ 𝐹 ) ∈ 𝑇 ) → ( 𝐺 ∘ 𝐹 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 51 |
5 49 50
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐺 ∘ 𝐹 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 52 |
|
f1of |
⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝐵 –1-1-onto→ 𝐵 → ( 𝐺 ∘ 𝐹 ) : 𝐵 ⟶ 𝐵 ) |
| 53 |
|
fcoi2 |
⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( 𝐺 ∘ 𝐹 ) ) |
| 54 |
51 52 53
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( 𝐺 ∘ 𝐹 ) ) |
| 55 |
47 54
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) = ( 𝐺 ∘ 𝐹 ) ) |
| 56 |
29 44 55
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |