Metamath Proof Explorer


Theorem cdlemg4a

Description: TODO: FIX COMMENT If fg(p) = p, then tr f = tr g. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
7 6 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) )
8 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → 𝐾 ∈ HL )
9 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → 𝐺𝑇 )
11 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
12 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
13 12 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
14 9 10 11 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
15 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → 𝑃𝐴 )
16 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
17 16 2 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐺𝑃 ) ∈ 𝐴𝑃𝐴 ) → ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) = ( 𝑃 ( join ‘ 𝐾 ) ( 𝐺𝑃 ) ) )
18 8 14 15 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) = ( 𝑃 ( join ‘ 𝐾 ) ( 𝐺𝑃 ) ) )
19 7 18 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 ( join ‘ 𝐾 ) ( 𝐺𝑃 ) ) )
20 19 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑃 ( join ‘ 𝐾 ) ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
21 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → 𝐹𝑇 )
22 9 10 11 12 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
23 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
24 1 16 23 2 3 4 5 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
25 9 21 22 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
26 1 16 23 2 3 4 5 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( join ‘ 𝐾 ) ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
27 9 10 11 26 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( join ‘ 𝐾 ) ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
28 20 25 27 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )