Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemg4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemg4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemg4.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemg4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
cdlemg4b.v |
⊢ 𝑉 = ( 𝑅 ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
9 |
1 6 8 2 3 4 5
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
10 |
9
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
11 |
7 10
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → 𝑉 = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
12 |
11
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑃 ∨ 𝑉 ) = ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
13 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
15 |
1 2 3 4
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
16 |
15
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
17 |
16
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
18 |
|
eqid |
⊢ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) |
19 |
1 6 8 2 3 18
|
cdleme0cp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
20 |
13 14 17 19
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
21 |
12 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑃 ∨ 𝑉 ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |