Metamath Proof Explorer


Theorem cdlemg4c

Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.j = ( join ‘ 𝐾 )
cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
Assertion cdlemg4c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ) → ¬ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg4.j = ( join ‘ 𝐾 )
7 cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
8 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simplr2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
10 simplr3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝐺𝑇 )
11 1 2 3 4 5 6 7 cdlemg4b2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) → ( ( 𝐺𝑄 ) 𝑉 ) = ( 𝑄 ( 𝐺𝑄 ) ) )
12 8 9 10 11 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( ( 𝐺𝑄 ) 𝑉 ) = ( 𝑄 ( 𝐺𝑄 ) ) )
13 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝐺𝑄 ) ( 𝑃 𝑉 ) )
14 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝐾 ∈ HL )
15 14 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝐾 ∈ Lat )
16 simpr1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝑃𝐴 )
17 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
18 17 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
19 16 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
20 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
21 simpr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝐺𝑇 )
22 17 3 4 5 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
23 20 21 22 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
24 7 23 eqeltrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) )
25 17 1 6 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → 𝑉 ( 𝑃 𝑉 ) )
26 15 19 24 25 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝑉 ( 𝑃 𝑉 ) )
27 26 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝑉 ( 𝑃 𝑉 ) )
28 simpr2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝑄𝐴 )
29 17 2 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
30 28 29 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
31 17 3 4 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
32 20 21 30 31 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
33 17 6 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
34 15 19 24 33 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
35 17 1 6 latjle12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ∧ 𝑉 ( 𝑃 𝑉 ) ) ↔ ( ( 𝐺𝑄 ) 𝑉 ) ( 𝑃 𝑉 ) ) )
36 15 32 24 34 35 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( ( ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ∧ 𝑉 ( 𝑃 𝑉 ) ) ↔ ( ( 𝐺𝑄 ) 𝑉 ) ( 𝑃 𝑉 ) ) )
37 36 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( ( ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ∧ 𝑉 ( 𝑃 𝑉 ) ) ↔ ( ( 𝐺𝑄 ) 𝑉 ) ( 𝑃 𝑉 ) ) )
38 13 27 37 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( ( 𝐺𝑄 ) 𝑉 ) ( 𝑃 𝑉 ) )
39 12 38 eqbrtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝑄 ( 𝐺𝑄 ) ) ( 𝑃 𝑉 ) )
40 15 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝐾 ∈ Lat )
41 30 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
42 32 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
43 19 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
44 8 10 22 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
45 7 44 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) )
46 40 43 45 33 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
47 17 1 6 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) ↔ ( 𝑄 ( 𝐺𝑄 ) ) ( 𝑃 𝑉 ) ) )
48 40 41 42 46 47 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( ( 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) ↔ ( 𝑄 ( 𝐺𝑄 ) ) ( 𝑃 𝑉 ) ) )
49 39 48 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → ( 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) )
50 49 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) ∧ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) → 𝑄 ( 𝑃 𝑉 ) )
51 50 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( ( 𝐺𝑄 ) ( 𝑃 𝑉 ) → 𝑄 ( 𝑃 𝑉 ) ) )
52 51 con3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ) → ( ¬ 𝑄 ( 𝑃 𝑉 ) → ¬ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) ) )
53 52 3impia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ) → ¬ ( 𝐺𝑄 ) ( 𝑃 𝑉 ) )