Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemg4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemg4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemg4.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemg4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
cdlemg4b.v |
⊢ 𝑉 = ( 𝑅 ‘ 𝐺 ) |
8 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simplr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
10 |
|
simplr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝐺 ∈ 𝑇 ) |
11 |
1 2 3 4 5 6 7
|
cdlemg4b2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) = ( 𝑄 ∨ ( 𝐺 ‘ 𝑄 ) ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) = ( 𝑄 ∨ ( 𝐺 ‘ 𝑄 ) ) ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝐾 ∈ HL ) |
15 |
14
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝐾 ∈ Lat ) |
16 |
|
simpr1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝑃 ∈ 𝐴 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
18 |
17 2
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
19 |
16 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
20 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝐺 ∈ 𝑇 ) |
22 |
17 3 4 5
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
7 23
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
25 |
17 1 6
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) |
26 |
15 19 24 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) |
28 |
|
simpr2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝑄 ∈ 𝐴 ) |
29 |
17 2
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
31 |
17 3 4
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
20 21 30 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐺 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
17 6
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
15 19 24 33
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
17 1 6
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
36 |
15 32 24 34 35
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( ( ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( ( ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
38 |
13 27 37
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
39 |
12 38
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝑄 ∨ ( 𝐺 ‘ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
40 |
15
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝐾 ∈ Lat ) |
41 |
30
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
42 |
32
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝐺 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
19
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
44 |
8 10 22
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
45 |
7 44
|
eqeltrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
46 |
40 43 45 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
17 1 6
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( 𝑄 ∨ ( 𝐺 ‘ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
48 |
40 41 42 46 47
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( 𝑄 ∨ ( 𝐺 ‘ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
49 |
39 48
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
50 |
49
|
simpld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ) |
51 |
50
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
52 |
51
|
con3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ) → ( ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) → ¬ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
53 |
52
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ) → ¬ ( 𝐺 ‘ 𝑄 ) ≤ ( 𝑃 ∨ 𝑉 ) ) |