Metamath Proof Explorer


Theorem cdlemg4e

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.j = ( join ‘ 𝐾 )
cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
cdlemg4.m = ( meet ‘ 𝐾 )
Assertion cdlemg4e ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg4.j = ( join ‘ 𝐾 )
7 cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
8 cdlemg4.m = ( meet ‘ 𝐾 )
9 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐹𝑇 )
11 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐺𝑇 )
12 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
14 9 11 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
15 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
16 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
17 9 11 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
18 1 2 3 4 5 6 7 cdlemg4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ¬ ( 𝐺𝑄 ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
19 1 6 8 2 3 4 5 cdlemc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ∧ ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) ) ∧ ¬ ( 𝐺𝑄 ) ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) ) ) )
20 9 10 14 17 18 19 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) ) ) )