Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemg4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemg4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemg4.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemg4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
cdlemg4b.v |
⊢ 𝑉 = ( 𝑅 ‘ 𝐺 ) |
8 |
|
cdlemg4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
9 |
1 2 3 4 5 6 7 8
|
cdlemg4e |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = ( ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ∧ 𝑊 ) ) ) ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
12 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝐹 ∈ 𝑇 ) |
13 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝐺 ∈ 𝑇 ) |
14 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) |
15 |
1 2 3 4 5
|
cdlemg4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
16 |
10 11 12 13 14 15
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
17 |
7 16
|
eqtr4id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑉 = ( 𝑅 ‘ 𝐹 ) ) |
18 |
17
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) = ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
19 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
20 |
1 2 3 4 5 6 7
|
cdlemg4b12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) = ( 𝑄 ∨ 𝑉 ) ) |
21 |
10 19 13 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺 ‘ 𝑄 ) ∨ 𝑉 ) = ( 𝑄 ∨ 𝑉 ) ) |
22 |
18 21
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑄 ∨ 𝑉 ) ) |
23 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
24 |
3 4 1 6 2 8 23
|
cdlemg2m |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐺 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
25 |
10 11 19 13 24
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
26 |
14 25
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
27 |
22 26
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ∧ 𝑊 ) ) ) = ( ( 𝑄 ∨ 𝑉 ) ∧ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
28 |
9 27
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = ( ( 𝑄 ∨ 𝑉 ) ∧ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |