Metamath Proof Explorer


Theorem cdlemg4f

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.j = ( join ‘ 𝐾 )
cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
cdlemg4.m = ( meet ‘ 𝐾 )
Assertion cdlemg4f ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( 𝑄 𝑉 ) ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg4.j = ( join ‘ 𝐾 )
7 cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
8 cdlemg4.m = ( meet ‘ 𝐾 )
9 1 2 3 4 5 6 7 8 cdlemg4e ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) ) ) )
10 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
12 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐹𝑇 )
13 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐺𝑇 )
14 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
15 1 2 3 4 5 cdlemg4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )
16 10 11 12 13 14 15 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )
17 7 16 eqtr4id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑉 = ( 𝑅𝐹 ) )
18 17 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺𝑄 ) 𝑉 ) = ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) )
19 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
20 1 2 3 4 5 6 7 cdlemg4b12 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐺𝑇 ) → ( ( 𝐺𝑄 ) 𝑉 ) = ( 𝑄 𝑉 ) )
21 10 19 13 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺𝑄 ) 𝑉 ) = ( 𝑄 𝑉 ) )
22 18 21 eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) = ( 𝑄 𝑉 ) )
23 eqid ( ( 𝑃 𝑄 ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 )
24 3 4 1 6 2 8 23 cdlemg2m ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐺𝑇 ) → ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
25 10 11 19 13 24 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
26 14 25 oveq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) ) = ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) )
27 22 26 oveq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝐺𝑄 ) ( 𝑅𝐹 ) ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) 𝑊 ) ) ) = ( ( 𝑄 𝑉 ) ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
28 9 27 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( 𝑄 𝑉 ) ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )