Metamath Proof Explorer


Theorem cdlemg5

Description: TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle ? TODO: The .\/ hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses cdlemg5.l = ( le ‘ 𝐾 )
cdlemg5.j = ( join ‘ 𝐾 )
cdlemg5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg5.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion cdlemg5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg5.l = ( le ‘ 𝐾 )
2 cdlemg5.j = ( join ‘ 𝐾 )
3 cdlemg5.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemg5.h 𝐻 = ( LHyp ‘ 𝐾 )
5 1 3 4 lhpexle ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑟𝐴 𝑟 𝑊 )
6 5 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ∃ 𝑟𝐴 𝑟 𝑊 )
7 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑟𝐴𝑟 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑟𝐴𝑟 𝑊 ) ) → ( 𝑟𝐴𝑟 𝑊 ) )
9 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑟𝐴𝑟 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 1 2 3 4 cdlemf1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑟𝐴𝑟 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 ( 𝑃 𝑞 ) ) )
11 7 8 9 10 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑟𝐴𝑟 𝑊 ) ) → ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 ( 𝑃 𝑞 ) ) )
12 3simpa ( ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 ( 𝑃 𝑞 ) ) → ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊 ) )
13 12 reximi ( ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 ( 𝑃 𝑞 ) ) → ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊 ) )
14 11 13 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑟𝐴𝑟 𝑊 ) ) → ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊 ) )
15 6 14 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ∃ 𝑞𝐴 ( 𝑃𝑞 ∧ ¬ 𝑞 𝑊 ) )