Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemg4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemg4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemg4.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemg4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
cdlemg4b.v |
⊢ 𝑉 = ( 𝑅 ‘ 𝐺 ) |
8 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
10 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
11 |
|
simpl23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝐺 ∈ 𝑇 ) |
13 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) |
14 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝐾 ∈ HL ) |
15 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑄 ∈ 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑄 ∈ 𝐴 ) |
17 |
|
simprll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑟 ∈ 𝐴 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
19 |
18 3 4 5
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
8 12 19
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
7 20
|
eqeltrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
22 |
|
simp22r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ¬ 𝑄 ≤ 𝑊 ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ¬ 𝑄 ≤ 𝑊 ) |
24 |
1 3 4 5
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ≤ 𝑊 ) |
25 |
8 12 24
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≤ 𝑊 ) |
26 |
7 25
|
eqbrtrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑉 ≤ 𝑊 ) |
27 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ HL ) |
28 |
27
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ Lat ) |
29 |
28
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝐾 ∈ Lat ) |
30 |
18 2
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
31 |
15 30
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
33 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑊 ∈ 𝐻 ) |
34 |
18 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
37 |
18 1
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ 𝑉 ∧ 𝑉 ≤ 𝑊 ) → 𝑄 ≤ 𝑊 ) ) |
38 |
29 32 21 36 37
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( ( 𝑄 ≤ 𝑉 ∧ 𝑉 ≤ 𝑊 ) → 𝑄 ≤ 𝑊 ) ) |
39 |
26 38
|
mpan2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑄 ≤ 𝑉 → 𝑄 ≤ 𝑊 ) ) |
40 |
23 39
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ¬ 𝑄 ≤ 𝑉 ) |
41 |
18 1 6 2
|
hlexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ≤ 𝑉 ) → ( 𝑄 ≤ ( 𝑟 ∨ 𝑉 ) → 𝑟 ≤ ( 𝑄 ∨ 𝑉 ) ) ) |
42 |
14 16 17 21 40 41
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑄 ≤ ( 𝑟 ∨ 𝑉 ) → 𝑟 ≤ ( 𝑄 ∨ 𝑉 ) ) ) |
43 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ) |
44 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑃 ∈ 𝐴 ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑃 ∈ 𝐴 ) |
46 |
18 2
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
47 |
45 46
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
48 |
18 1 6
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) |
49 |
29 47 21 48
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) |
50 |
18 6
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
29 47 21 50
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
18 1 6
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( 𝑄 ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
53 |
29 32 21 51 52
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( 𝑄 ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
54 |
43 49 53
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑄 ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
55 |
18 2
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
56 |
17 55
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
57 |
18 6
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
58 |
29 32 21 57
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑄 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
18 1
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑟 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑟 ≤ ( 𝑄 ∨ 𝑉 ) ∧ ( 𝑄 ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
60 |
29 56 58 51 59
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( ( 𝑟 ≤ ( 𝑄 ∨ 𝑉 ) ∧ ( 𝑄 ∨ 𝑉 ) ≤ ( 𝑃 ∨ 𝑉 ) ) → 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
61 |
54 60
|
mpan2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑟 ≤ ( 𝑄 ∨ 𝑉 ) → 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
62 |
42 61
|
syld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑄 ≤ ( 𝑟 ∨ 𝑉 ) → 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
63 |
13 62
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ¬ 𝑄 ≤ ( 𝑟 ∨ 𝑉 ) ) |
64 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
65 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) |
66 |
1 2 3 4 5 6 7
|
cdlemg6a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) = 𝑟 ) |
67 |
8 64 9 11 12 13 65 66
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) = 𝑟 ) |
68 |
1 2 3 4 5 6 7
|
cdlemg6b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ ( 𝑟 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) = 𝑟 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = 𝑄 ) |
69 |
8 9 10 11 12 63 67 68
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = 𝑄 ) |
70 |
69
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = 𝑄 ) ) |