Metamath Proof Explorer


Theorem cdlemg6c

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.j = ( join ‘ 𝐾 )
cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
Assertion cdlemg6c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg4.j = ( join ‘ 𝐾 )
7 cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
8 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) )
10 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
11 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝐹𝑇 )
12 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝐺𝑇 )
13 simprr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ¬ 𝑟 ( 𝑃 𝑉 ) )
14 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝐾 ∈ HL )
15 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑄𝐴 )
16 15 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑄𝐴 )
17 simprll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑟𝐴 )
18 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
19 18 3 4 5 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
20 8 12 19 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
21 7 20 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) )
22 simp22r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ¬ 𝑄 𝑊 )
23 22 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ¬ 𝑄 𝑊 )
24 1 3 4 5 trlle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → ( 𝑅𝐺 ) 𝑊 )
25 8 12 24 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑅𝐺 ) 𝑊 )
26 7 25 eqbrtrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑉 𝑊 )
27 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ HL )
28 27 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ Lat )
29 28 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝐾 ∈ Lat )
30 18 2 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
31 15 30 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
32 31 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
33 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑊𝐻 )
34 18 3 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
35 33 34 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
36 35 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
37 18 1 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 𝑉𝑉 𝑊 ) → 𝑄 𝑊 ) )
38 29 32 21 36 37 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( ( 𝑄 𝑉𝑉 𝑊 ) → 𝑄 𝑊 ) )
39 26 38 mpan2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑄 𝑉𝑄 𝑊 ) )
40 23 39 mtod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ¬ 𝑄 𝑉 )
41 18 1 6 2 hlexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑟𝐴𝑉 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 𝑉 ) → ( 𝑄 ( 𝑟 𝑉 ) → 𝑟 ( 𝑄 𝑉 ) ) )
42 14 16 17 21 40 41 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑄 ( 𝑟 𝑉 ) → 𝑟 ( 𝑄 𝑉 ) ) )
43 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑄 ( 𝑃 𝑉 ) )
44 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑃𝐴 )
45 44 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑃𝐴 )
46 18 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
47 45 46 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
48 18 1 6 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → 𝑉 ( 𝑃 𝑉 ) )
49 29 47 21 48 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑉 ( 𝑃 𝑉 ) )
50 18 6 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
51 29 47 21 50 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
52 18 1 6 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ( 𝑃 𝑉 ) ∧ 𝑉 ( 𝑃 𝑉 ) ) ↔ ( 𝑄 𝑉 ) ( 𝑃 𝑉 ) ) )
53 29 32 21 51 52 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( ( 𝑄 ( 𝑃 𝑉 ) ∧ 𝑉 ( 𝑃 𝑉 ) ) ↔ ( 𝑄 𝑉 ) ( 𝑃 𝑉 ) ) )
54 43 49 53 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑄 𝑉 ) ( 𝑃 𝑉 ) )
55 18 2 atbase ( 𝑟𝐴𝑟 ∈ ( Base ‘ 𝐾 ) )
56 17 55 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) )
57 18 6 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
58 29 32 21 57 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑄 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
59 18 1 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑟 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑟 ( 𝑄 𝑉 ) ∧ ( 𝑄 𝑉 ) ( 𝑃 𝑉 ) ) → 𝑟 ( 𝑃 𝑉 ) ) )
60 29 56 58 51 59 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( ( 𝑟 ( 𝑄 𝑉 ) ∧ ( 𝑄 𝑉 ) ( 𝑃 𝑉 ) ) → 𝑟 ( 𝑃 𝑉 ) ) )
61 54 60 mpan2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑟 ( 𝑄 𝑉 ) → 𝑟 ( 𝑃 𝑉 ) ) )
62 42 61 syld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑄 ( 𝑟 𝑉 ) → 𝑟 ( 𝑃 𝑉 ) ) )
63 13 62 mtod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ¬ 𝑄 ( 𝑟 𝑉 ) )
64 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
65 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
66 1 2 3 4 5 6 7 cdlemg6a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑟 ) ) = 𝑟 )
67 8 64 9 11 12 13 65 66 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑟 ) ) = 𝑟 )
68 1 2 3 4 5 6 7 cdlemg6b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑟 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑟 ) ) = 𝑟 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
69 8 9 10 11 12 63 67 68 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
70 69 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) )