Metamath Proof Explorer


Theorem cdlemg6d

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.j = ( join ‘ 𝐾 )
cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
Assertion cdlemg6d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 ( 𝐺𝑃 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg4.j = ( join ‘ 𝐾 )
7 cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐺𝑇 )
11 1 2 3 4 5 6 7 cdlemg4b1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺𝑇 ) → ( 𝑃 𝑉 ) = ( 𝑃 ( 𝐺𝑃 ) ) )
12 8 9 10 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃 𝑉 ) = ( 𝑃 ( 𝐺𝑃 ) ) )
13 12 breq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑟 ( 𝑃 𝑉 ) ↔ 𝑟 ( 𝑃 ( 𝐺𝑃 ) ) ) )
14 13 notbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ¬ 𝑟 ( 𝑃 𝑉 ) ↔ ¬ 𝑟 ( 𝑃 ( 𝐺𝑃 ) ) ) )
15 14 anbi2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) ↔ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 ( 𝐺𝑃 ) ) ) ) )
16 1 2 3 4 5 6 7 cdlemg6c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 𝑉 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) )
17 15 16 sylbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ¬ 𝑟 ( 𝑃 ( 𝐺𝑃 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 ) )