Metamath Proof Explorer


Theorem cdlemg7fvN

Description: Value of a translation composition in terms of an associated atom. (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg7fv.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg7fv.l = ( le ‘ 𝐾 )
cdlemg7fv.j = ( join ‘ 𝐾 )
cdlemg7fv.m = ( meet ‘ 𝐾 )
cdlemg7fv.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg7fv.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg7fv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg7fvN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg7fv.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg7fv.l = ( le ‘ 𝐾 )
3 cdlemg7fv.j = ( join ‘ 𝐾 )
4 cdlemg7fv.m = ( meet ‘ 𝐾 )
5 cdlemg7fv.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg7fv.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemg7fv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐺𝑇 )
10 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
11 2 5 6 7 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
12 8 9 10 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
13 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
14 2 5 6 7 1 cdlemg7fvbwN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐺𝑇 ) → ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐺𝑋 ) 𝑊 ) )
15 8 13 9 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐺𝑋 ) 𝑊 ) )
16 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐹𝑇 )
17 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 )
18 6 7 2 3 5 4 1 cdlemg2fv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) )
19 8 10 13 9 17 18 syl122anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) )
20 19 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺𝑋 ) 𝑊 ) = ( ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) 𝑊 ) )
21 simp2rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑋𝐵 )
22 1 2 3 4 5 6 lhpelim ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ∧ 𝑋𝐵 ) → ( ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) 𝑊 ) = ( 𝑋 𝑊 ) )
23 8 12 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) 𝑊 ) = ( 𝑋 𝑊 ) )
24 20 23 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺𝑋 ) 𝑊 ) = ( 𝑋 𝑊 ) )
25 24 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺𝑃 ) ( ( 𝐺𝑋 ) 𝑊 ) ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) )
26 25 19 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺𝑃 ) ( ( 𝐺𝑋 ) 𝑊 ) ) = ( 𝐺𝑋 ) )
27 6 7 2 3 5 4 1 cdlemg2fv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ∧ ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐺𝑋 ) 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ( ( 𝐺𝑋 ) 𝑊 ) ) = ( 𝐺𝑋 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑋 ) 𝑊 ) ) )
28 8 12 15 16 26 27 syl122anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑋 ) 𝑊 ) ) )
29 24 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( ( 𝐺𝑋 ) 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝑋 𝑊 ) ) )
30 28 29 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝑋 𝑊 ) ) )