Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg7fv.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemg7fv.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemg7fv.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemg7fv.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemg7fv.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemg7fv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemg7fv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝐺 ∈ 𝑇 ) |
10 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
11 |
2 5 6 7
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
13 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
14 |
2 5 6 7 1
|
cdlemg7fvbwN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑋 ) ≤ 𝑊 ) ) |
15 |
8 13 9 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑋 ) ≤ 𝑊 ) ) |
16 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝐹 ∈ 𝑇 ) |
17 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
18 |
6 7 2 3 5 4 1
|
cdlemg2fv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐺 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
19 |
8 10 13 9 17 18
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐺 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑊 ) ) |
21 |
|
simp2rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
22 |
1 2 3 4 5 6
|
lhpelim |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑊 ) = ( 𝑋 ∧ 𝑊 ) ) |
23 |
8 12 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑊 ) = ( 𝑋 ∧ 𝑊 ) ) |
24 |
20 23
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) = ( 𝑋 ∧ 𝑊 ) ) |
25 |
24
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
26 |
25 19
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) ) = ( 𝐺 ‘ 𝑋 ) ) |
27 |
6 7 2 3 5 4 1
|
cdlemg2fv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑋 ) ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) ) = ( 𝐺 ‘ 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) ) ) |
28 |
8 12 15 16 26 27
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) ) ) |
29 |
24
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( ( 𝐺 ‘ 𝑋 ) ∧ 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
30 |
28 29
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |