Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemg4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemg4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemg4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
8 |
5 1 6 7 2 3
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) |
9 |
8
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) |
10 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑟 ∈ 𝐴 ) |
12 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑟 ≤ 𝑊 ) |
13 |
11 12
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
14 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
15 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐹 ∈ 𝑇 ) |
16 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) |
17 |
3 4 1 6 2 7 5
|
cdlemg2fv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
18 |
10 13 14 15 16 17
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
19 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ HL ) |
20 |
19
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ Lat ) |
21 |
1 2 3 4
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑟 ) ≤ 𝑊 ) ) |
22 |
21
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ) |
23 |
10 15 13 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 ) |
24 |
5 2
|
atbase |
⊢ ( ( 𝐹 ‘ 𝑟 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑟 ) ∈ 𝐵 ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑟 ) ∈ 𝐵 ) |
26 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
27 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑊 ∈ 𝐻 ) |
28 |
5 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
29 |
27 28
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑊 ∈ 𝐵 ) |
30 |
5 7
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) |
31 |
20 26 29 30
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) |
32 |
5 6
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ‘ 𝑟 ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ 𝐵 ) |
33 |
20 25 31 32
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ 𝐵 ) |
34 |
18 33
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
35 |
21
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) → ¬ ( 𝐹 ‘ 𝑟 ) ≤ 𝑊 ) |
36 |
10 15 13 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ ( 𝐹 ‘ 𝑟 ) ≤ 𝑊 ) |
37 |
5 1 6
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ‘ 𝑟 ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝑟 ) ≤ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
38 |
20 25 31 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑟 ) ≤ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
39 |
5 1
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐹 ‘ 𝑟 ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑟 ) ≤ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ 𝑊 ) → ( 𝐹 ‘ 𝑟 ) ≤ 𝑊 ) ) |
40 |
20 25 33 29 39
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑟 ) ≤ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ 𝑊 ) → ( 𝐹 ‘ 𝑟 ) ≤ 𝑊 ) ) |
41 |
38 40
|
mpand |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ 𝑊 → ( 𝐹 ‘ 𝑟 ) ≤ 𝑊 ) ) |
42 |
36 41
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ 𝑊 ) |
43 |
18
|
breq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹 ‘ 𝑋 ) ≤ 𝑊 ↔ ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ 𝑊 ) ) |
44 |
42 43
|
mtbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ ( 𝐹 ‘ 𝑋 ) ≤ 𝑊 ) |
45 |
34 44
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹 ‘ 𝑋 ) ≤ 𝑊 ) ) |
46 |
45
|
rexlimdv3a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹 ‘ 𝑋 ) ≤ 𝑊 ) ) ) |
47 |
9 46
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹 ‘ 𝑋 ) ≤ 𝑊 ) ) |