Metamath Proof Explorer


Theorem cdlemg7fvbwN

Description: Properties of a translation of an element not under W . TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw ? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.b 𝐵 = ( Base ‘ 𝐾 )
Assertion cdlemg7fvbwN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹𝑋 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.b 𝐵 = ( Base ‘ 𝐾 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
8 5 1 6 7 2 3 lhpmcvr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) )
9 8 3adant3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) )
10 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑟𝐴 )
12 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑟 𝑊 )
13 11 12 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) )
14 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
15 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐹𝑇 )
16 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 )
17 3 4 1 6 2 7 5 cdlemg2fv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) )
18 10 13 14 15 16 17 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) )
19 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ HL )
20 19 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ Lat )
21 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ) → ( ( 𝐹𝑟 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑟 ) 𝑊 ) )
22 21 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ) → ( 𝐹𝑟 ) ∈ 𝐴 )
23 10 15 13 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑟 ) ∈ 𝐴 )
24 5 2 atbase ( ( 𝐹𝑟 ) ∈ 𝐴 → ( 𝐹𝑟 ) ∈ 𝐵 )
25 23 24 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑟 ) ∈ 𝐵 )
26 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑋𝐵 )
27 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑊𝐻 )
28 5 3 lhpbase ( 𝑊𝐻𝑊𝐵 )
29 27 28 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑊𝐵 )
30 5 7 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 )
31 20 26 29 30 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 )
32 5 6 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐹𝑟 ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) → ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ 𝐵 )
33 20 25 31 32 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ 𝐵 )
34 18 33 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) ∈ 𝐵 )
35 21 simprd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ) → ¬ ( 𝐹𝑟 ) 𝑊 )
36 10 15 13 35 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ ( 𝐹𝑟 ) 𝑊 )
37 5 1 6 latlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝐹𝑟 ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) → ( 𝐹𝑟 ) ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) )
38 20 25 31 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑟 ) ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) )
39 5 1 lattr ( ( 𝐾 ∈ Lat ∧ ( ( 𝐹𝑟 ) ∈ 𝐵 ∧ ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ 𝐵𝑊𝐵 ) ) → ( ( ( 𝐹𝑟 ) ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) 𝑊 ) → ( 𝐹𝑟 ) 𝑊 ) )
40 20 25 33 29 39 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝐹𝑟 ) ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) 𝑊 ) → ( 𝐹𝑟 ) 𝑊 ) )
41 38 40 mpand ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) 𝑊 → ( 𝐹𝑟 ) 𝑊 ) )
42 36 41 mtod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) 𝑊 )
43 18 breq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹𝑋 ) 𝑊 ↔ ( ( 𝐹𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) 𝑊 ) )
44 42 43 mtbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ ( 𝐹𝑋 ) 𝑊 )
45 34 44 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) ∧ 𝑟𝐴 ∧ ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹𝑋 ) 𝑊 ) )
46 45 rexlimdv3a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) → ( ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → ( ( 𝐹𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹𝑋 ) 𝑊 ) ) )
47 9 46 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝐹𝑋 ) 𝑊 ) )