Metamath Proof Explorer


Theorem cdlemk55

Description: Part of proof of Lemma K of Crawley p. 118. Line 11, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk5.l = ( le ‘ 𝐾 )
cdlemk5.j = ( join ‘ 𝐾 )
cdlemk5.m = ( meet ‘ 𝐾 )
cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemk55 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺𝐼 ) / 𝑔 𝑋 = ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk5.l = ( le ‘ 𝐾 )
3 cdlemk5.j = ( join ‘ 𝐾 )
4 cdlemk5.m = ( meet ‘ 𝐾 )
5 cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
11 cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 simpl1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) )
13 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) )
14 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → 𝐺𝑇 )
15 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
16 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → 𝐼𝑇 )
17 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → ( 𝑅𝐺 ) = ( 𝑅𝐼 ) )
18 1 2 3 4 5 6 7 8 9 10 11 cdlemk55b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐼𝑇 ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) ) → ( 𝐺𝐼 ) / 𝑔 𝑋 = ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) )
19 12 13 14 15 16 17 18 syl132anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) = ( 𝑅𝐼 ) ) → ( 𝐺𝐼 ) / 𝑔 𝑋 = ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) )
20 simpl1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) )
21 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) )
22 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → 𝐺𝑇 )
23 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
24 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → 𝐼𝑇 )
25 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) )
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐼𝑇 ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) ) → ( 𝐺𝐼 ) / 𝑔 𝑋 = ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) )
27 20 21 22 23 24 25 26 syl132anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐼 ) ) → ( 𝐺𝐼 ) / 𝑔 𝑋 = ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) )
28 19 27 pm2.61dane ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ 𝐺𝑇𝐼𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺𝐼 ) / 𝑔 𝑋 = ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) )