Metamath Proof Explorer


Theorem ceige

Description: The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceige ( 𝐴 ∈ ℝ → 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
2 reflcl ( - 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ )
4 flle ( - 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 )
5 1 4 syl ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 )
6 5 adantr ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) → ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 )
7 lenegcon2 ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) → ( 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) ↔ ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 ) )
8 6 7 mpbird ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) → 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) )
9 3 8 mpdan ( 𝐴 ∈ ℝ → 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) )