Description: The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ceige | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
2 | reflcl | ⊢ ( - 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) |
4 | flle | ⊢ ( - 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 ) | |
5 | 1 4 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 ) |
6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) → ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 ) |
7 | lenegcon2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) → ( 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) ↔ ( ⌊ ‘ - 𝐴 ) ≤ - 𝐴 ) ) | |
8 | 6 7 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) → 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) ) |
9 | 3 8 | mpdan | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ - ( ⌊ ‘ - 𝐴 ) ) |