Metamath Proof Explorer


Theorem ceilcl

Description: Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015)

Ref Expression
Assertion ceilcl ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 ceilval ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )
2 ceicl ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℤ )
3 1 2 eqeltrd ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℤ )