Metamath Proof Explorer


Theorem ceilcld

Description: Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis ceilcld.1 ( 𝜑𝐴 ∈ ℝ )
Assertion ceilcld ( 𝜑 → ( ⌈ ‘ 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 ceilcld.1 ( 𝜑𝐴 ∈ ℝ )
2 ceilcl ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℤ )
3 1 2 syl ( 𝜑 → ( ⌈ ‘ 𝐴 ) ∈ ℤ )