Description: An integer is its own ceiling. (Contributed by AV, 30-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ceilid | ⊢ ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
2 | ceilval | ⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) ) |
4 | znegcl | ⊢ ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ ) | |
5 | flid | ⊢ ( - 𝐴 ∈ ℤ → ( ⌊ ‘ - 𝐴 ) = - 𝐴 ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ - 𝐴 ) = - 𝐴 ) |
7 | 6 | negeqd | ⊢ ( 𝐴 ∈ ℤ → - ( ⌊ ‘ - 𝐴 ) = - - 𝐴 ) |
8 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
9 | 8 | negnegd | ⊢ ( 𝐴 ∈ ℤ → - - 𝐴 = 𝐴 ) |
10 | 3 7 9 | 3eqtrd | ⊢ ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 ) |