Metamath Proof Explorer


Theorem ceilid

Description: An integer is its own ceiling. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceilid ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
2 ceilval ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )
4 znegcl ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ )
5 flid ( - 𝐴 ∈ ℤ → ( ⌊ ‘ - 𝐴 ) = - 𝐴 )
6 4 5 syl ( 𝐴 ∈ ℤ → ( ⌊ ‘ - 𝐴 ) = - 𝐴 )
7 6 negeqd ( 𝐴 ∈ ℤ → - ( ⌊ ‘ - 𝐴 ) = - - 𝐴 )
8 zcn ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ )
9 8 negnegd ( 𝐴 ∈ ℤ → - - 𝐴 = 𝐴 )
10 3 7 9 3eqtrd ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 )