Metamath Proof Explorer


Theorem ceilidz

Description: A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceilidz ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌈ ‘ 𝐴 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ceilid ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 )
2 ceilcl ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℤ )
3 eleq1 ( ( ⌈ ‘ 𝐴 ) = 𝐴 → ( ( ⌈ ‘ 𝐴 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) )
4 2 3 syl5ibcom ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) = 𝐴𝐴 ∈ ℤ ) )
5 1 4 impbid2 ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌈ ‘ 𝐴 ) = 𝐴 ) )