Metamath Proof Explorer


Theorem ceilm1lt

Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceilm1lt ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) − 1 ) < 𝐴 )

Proof

Step Hyp Ref Expression
1 ceilval ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )
2 1 oveq1d ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) − 1 ) = ( - ( ⌊ ‘ - 𝐴 ) − 1 ) )
3 ceim1l ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 )
4 2 3 eqbrtrd ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) − 1 ) < 𝐴 )