Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ceilm1lt | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) − 1 ) < 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceilval | ⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) ) | |
2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) − 1 ) = ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ) |
3 | ceim1l | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ) | |
4 | 2 3 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) − 1 ) < 𝐴 ) |