Metamath Proof Explorer


Theorem ceilval

Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015)

Ref Expression
Assertion ceilval ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 negeq ( 𝑥 = 𝐴 → - 𝑥 = - 𝐴 )
2 1 fveq2d ( 𝑥 = 𝐴 → ( ⌊ ‘ - 𝑥 ) = ( ⌊ ‘ - 𝐴 ) )
3 2 negeqd ( 𝑥 = 𝐴 → - ( ⌊ ‘ - 𝑥 ) = - ( ⌊ ‘ - 𝐴 ) )
4 df-ceil ⌈ = ( 𝑥 ∈ ℝ ↦ - ( ⌊ ‘ - 𝑥 ) )
5 negex - ( ⌊ ‘ - 𝐴 ) ∈ V
6 3 4 5 fvmpt ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )