| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 2 |
|
reflcl |
⊢ ( - 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) |
| 4 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℂ ) |
| 5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 6 |
|
negdi |
⊢ ( ( ( ⌊ ‘ - 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) = ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) ) |
| 7 |
4 5 6
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) = ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) ) |
| 8 |
4
|
negcld |
⊢ ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℂ ) |
| 9 |
|
negsub |
⊢ ( ( - ( ⌊ ‘ - 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) = ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ) |
| 10 |
8 5 9
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) = ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ) |
| 11 |
7 10
|
eqtr2d |
⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) = - ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 12 |
|
peano2re |
⊢ ( ( ⌊ ‘ - 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) |
| 13 |
3 12
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) |
| 14 |
|
flltp1 |
⊢ ( - 𝐴 ∈ ℝ → - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 15 |
1 14
|
syl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) → - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 17 |
|
ltnegcon1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) → ( - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ↔ - ( ( ⌊ ‘ - 𝐴 ) + 1 ) < 𝐴 ) ) |
| 18 |
16 17
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) < 𝐴 ) |
| 19 |
13 18
|
mpdan |
⊢ ( 𝐴 ∈ ℝ → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) < 𝐴 ) |
| 20 |
11 19
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ) |