Metamath Proof Explorer


Theorem ceqex

Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995) (Proof shortened by BJ, 1-May-2019)

Ref Expression
Assertion ceqex ( 𝑥 = 𝐴 → ( 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 19.8a ( ( 𝑥 = 𝐴𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
2 1 ex ( 𝑥 = 𝐴 → ( 𝜑 → ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
3 eqvisset ( 𝑥 = 𝐴𝐴 ∈ V )
4 alexeqg ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
5 3 4 syl ( 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
6 sp ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ( 𝑥 = 𝐴𝜑 ) )
7 6 com12 ( 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → 𝜑 ) )
8 5 7 sylbird ( 𝑥 = 𝐴 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) → 𝜑 ) )
9 2 8 impbid ( 𝑥 = 𝐴 → ( 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )