Metamath Proof Explorer


Theorem ceqsal

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid df-clab . (Revised by Wolf Lammen, 23-Jan-2025)

Ref Expression
Hypotheses ceqsal.1 𝑥 𝜓
ceqsal.2 𝐴 ∈ V
ceqsal.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsal ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 ceqsal.1 𝑥 𝜓
2 ceqsal.2 𝐴 ∈ V
3 ceqsal.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 1 19.23 ( ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) )
5 3 pm5.74i ( ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝑥 = 𝐴𝜓 ) )
6 5 albii ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) )
7 2 isseti 𝑥 𝑥 = 𝐴
8 7 a1bi ( 𝜓 ↔ ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) )
9 4 6 8 3bitr4i ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )