Step |
Hyp |
Ref |
Expression |
1 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) |
2 |
1
|
imim2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
3 |
2
|
com23 |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
4 |
3
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
5 |
|
19.21t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
6 |
4 5
|
imbitrid |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
7 |
6
|
imp |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |