Metamath Proof Explorer


Theorem ceqsalg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT . (Contributed by NM, 29-Oct-2003) (Proof shortened by BJ, 29-Sep-2019)

Ref Expression
Hypotheses ceqsalg.1 𝑥 𝜓
ceqsalg.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsalg ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsalg.1 𝑥 𝜓
2 ceqsalg.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 2 ax-gen 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 ceqsalt ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
5 1 3 4 mp3an12 ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )