Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsalgALT
Metamath Proof Explorer
Description: Alternate proof of ceqsalg , not using ceqsalt . (Contributed by NM , 29-Oct-2003) (Proof shortened by Andrew Salmon , 8-Jun-2011)
(Revised by BJ , 29-Sep-2019) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
ceqsalg.1
⊢ Ⅎ 𝑥 𝜓
ceqsalg.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
Assertion
ceqsalgALT
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
ceqsalg.1
⊢ Ⅎ 𝑥 𝜓
2
ceqsalg.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
3
elisset
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
4
nfa1
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 )
5
2
biimpd
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) )
6
5
a2i
⊢ ( ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) )
7
6
sps
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) )
8
4 1 7
exlimd
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) )
9
3 8
syl5com
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) )
10
2
biimprcd
⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) )
11
1 10
alrimi
⊢ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) )
12
9 11
impbid1
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) )