Step |
Hyp |
Ref |
Expression |
1 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
2 |
1
|
imim3i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
3 |
2
|
al2imi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
4 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
5 |
|
19.23t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
6 |
5
|
biimpd |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
7 |
4 6
|
syl7 |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) → ( 𝐴 ∈ 𝑉 → 𝜓 ) ) ) |
8 |
3 7
|
sylan9r |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝐴 ∈ 𝑉 → 𝜓 ) ) ) |
9 |
8
|
com23 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) ) |
10 |
9
|
3impia |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) |
11 |
|
ceqsal1t |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
12 |
11
|
3adant3 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
13 |
10 12
|
impbid |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |