Metamath Proof Explorer


Theorem ceqsalt

Description: Closed theorem version of ceqsalg . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Assertion ceqsalt ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
2 1 3ad2ant3 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ∃ 𝑥 𝑥 = 𝐴 )
3 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
4 3 imim3i ( ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( ( 𝑥 = 𝐴𝜑 ) → ( 𝑥 = 𝐴𝜓 ) ) )
5 4 al2imi ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) ) )
6 5 3ad2ant2 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) ) )
7 19.23t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) ) )
8 7 3ad2ant1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) ) )
9 6 8 sylibd ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) ) )
10 2 9 mpid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → 𝜓 ) )
11 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
12 11 imim2i ( ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜓𝜑 ) ) )
13 12 com23 ( ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) ) )
14 13 alimi ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) ) )
15 14 3ad2ant2 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) ) )
16 19.21t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) ) )
17 16 3ad2ant1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) ) )
18 15 17 mpbid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
19 10 18 impbid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )