Metamath Proof Explorer


Theorem ceqsalvOLD

Description: Obsolete version of ceqsalv as of 8-Sep-2024. (Contributed by NM, 18-Aug-1993) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ceqsalv.1 𝐴 ∈ V
ceqsalv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsalvOLD ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 ceqsalv.1 𝐴 ∈ V
2 ceqsalv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 nfv 𝑥 𝜓
4 3 1 2 ceqsal ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )