Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsex
Metamath Proof Explorer
Description: Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM , 2-Mar-1995) (Revised by Mario Carneiro , 10-Oct-2016) (Proof shortened by Wolf Lammen , 22-Jan-2025)
Ref
Expression
Hypotheses
ceqsex.1
⊢ Ⅎ 𝑥 𝜓
ceqsex.2
⊢ 𝐴 ∈ V
ceqsex.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
Assertion
ceqsex
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
ceqsex.1
⊢ Ⅎ 𝑥 𝜓
2
ceqsex.2
⊢ 𝐴 ∈ V
3
ceqsex.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
4
alinexa
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) )
5
1
nfn
⊢ Ⅎ 𝑥 ¬ 𝜓
6
3
notbid
⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
7
5 2 6
ceqsal
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ 𝜓 )
8
4 7
bitr3i
⊢ ( ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ¬ 𝜓 )
9
8
con4bii
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 )