Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class ceqsex  
				
		 
		
			
		 
		Description:   Elimination of an existential quantifier, using implicit substitution.
       (Contributed by NM , 2-Mar-1995)   (Revised by Mario Carneiro , 10-Oct-2016)   (Proof shortened by Wolf Lammen , 22-Jan-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ceqsex.1 ⊢  Ⅎ 𝑥  𝜓   
					
						ceqsex.2 ⊢  𝐴   ∈  V  
					
						ceqsex.3 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
				
					Assertion 
					ceqsex ⊢   ( ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  )  ↔  𝜓  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ceqsex.1 ⊢  Ⅎ 𝑥  𝜓   
						
							2 
								
							 
							ceqsex.2 ⊢  𝐴   ∈  V  
						
							3 
								
							 
							ceqsex.3 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
						
							4 
								
							 
							alinexa ⊢  ( ∀ 𝑥  ( 𝑥   =  𝐴   →  ¬  𝜑  )  ↔  ¬  ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  ) )  
						
							5 
								1 
							 
							nfn ⊢  Ⅎ 𝑥  ¬  𝜓   
						
							6 
								3 
							 
							notbid ⊢  ( 𝑥   =  𝐴   →  ( ¬  𝜑   ↔  ¬  𝜓  ) )  
						
							7 
								5  2  6 
							 
							ceqsal ⊢  ( ∀ 𝑥  ( 𝑥   =  𝐴   →  ¬  𝜑  )  ↔  ¬  𝜓  )  
						
							8 
								4  7 
							 
							bitr3i ⊢  ( ¬  ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  )  ↔  ¬  𝜓  )  
						
							9 
								8 
							 
							con4bii ⊢  ( ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  )  ↔  𝜓  )