Metamath Proof Explorer


Theorem ceqsex

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016) (Proof shortened by Wolf Lammen, 22-Jan-2025)

Ref Expression
Hypotheses ceqsex.1 𝑥 𝜓
ceqsex.2 𝐴 ∈ V
ceqsex.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsex ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 ceqsex.1 𝑥 𝜓
2 ceqsex.2 𝐴 ∈ V
3 ceqsex.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 alinexa ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
5 1 nfn 𝑥 ¬ 𝜓
6 3 notbid ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
7 5 2 6 ceqsal ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ 𝜓 )
8 4 7 bitr3i ( ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ¬ 𝜓 )
9 8 con4bii ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )