| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ceqsex2.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 2 |
|
ceqsex2.2 |
⊢ Ⅎ 𝑦 𝜒 |
| 3 |
|
ceqsex2.3 |
⊢ 𝐴 ∈ V |
| 4 |
|
ceqsex2.4 |
⊢ 𝐵 ∈ V |
| 5 |
|
ceqsex2.5 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
|
ceqsex2.6 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 7 |
|
3anass |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 9 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 11 |
10
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝐵 |
| 13 |
12 1
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝐵 ∧ 𝜓 ) |
| 14 |
13
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) |
| 15 |
5
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 16 |
15
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 17 |
14 3 16
|
ceqsex |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) |
| 18 |
2 4 6
|
ceqsex |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ↔ 𝜒 ) |
| 19 |
11 17 18
|
3bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ 𝜒 ) |