| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ceqsex2v.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
ceqsex2v.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
ceqsex2v.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
ceqsex2v.4 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 5 |
|
3anass |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 7 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 10 |
3
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 11 |
10
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 12 |
1 11
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) |
| 13 |
2 4
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ↔ 𝜒 ) |
| 14 |
9 12 13
|
3bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ 𝜒 ) |