| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ceqsex3v.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | ceqsex3v.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | ceqsex3v.3 | ⊢ 𝐶  ∈  V | 
						
							| 4 |  | ceqsex3v.4 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 5 |  | ceqsex3v.5 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 6 |  | ceqsex3v.6 | ⊢ ( 𝑧  =  𝐶  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 7 |  | anass | ⊢ ( ( ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 ) )  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 ) ) ) | 
						
							| 8 |  | 3anass | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ↔  ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 ) ) ) | 
						
							| 9 | 8 | anbi1i | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 )  ↔  ( ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 ) )  ∧  𝜑 ) ) | 
						
							| 10 |  | df-3an | ⊢ ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 )  ↔  ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 ) ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) )  ↔  ( 𝑥  =  𝐴  ∧  ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 ) ) ) | 
						
							| 12 | 7 9 11 | 3bitr4i | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) ) ) | 
						
							| 13 | 12 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 )  ↔  ∃ 𝑦 ∃ 𝑧 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) ) ) | 
						
							| 14 |  | 19.42vv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) )  ↔  ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) ) ) | 
						
							| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) ) ) | 
						
							| 17 | 4 | 3anbi3d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 )  ↔  ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜓 ) ) ) | 
						
							| 18 | 17 | 2exbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 )  ↔  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜓 ) ) ) | 
						
							| 19 | 1 18 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜑 ) )  ↔  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜓 ) ) | 
						
							| 20 | 2 3 5 6 | ceqsex2v | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶  ∧  𝜓 )  ↔  𝜃 ) | 
						
							| 21 | 16 19 20 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  ∧  𝜑 )  ↔  𝜃 ) |