Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex3v.1 |
⊢ 𝐴 ∈ V |
2 |
|
ceqsex3v.2 |
⊢ 𝐵 ∈ V |
3 |
|
ceqsex3v.3 |
⊢ 𝐶 ∈ V |
4 |
|
ceqsex3v.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
ceqsex3v.5 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
6 |
|
ceqsex3v.6 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
7 |
|
anass |
⊢ ( ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ) ) |
8 |
|
3anass |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ) ) |
9 |
8
|
anbi1i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ) ∧ 𝜑 ) ) |
10 |
|
df-3an |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ↔ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ) ) |
12 |
7 9 11
|
3bitr4i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
13 |
12
|
2exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
14 |
|
19.42vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
15 |
13 14
|
bitri |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
17 |
4
|
3anbi3d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ) ) |
18 |
17
|
2exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ) ) |
19 |
1 18
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ) |
20 |
2 3 5 6
|
ceqsex2v |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ↔ 𝜃 ) |
21 |
19 20
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ 𝜃 ) |
22 |
16 21
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ 𝜃 ) |