| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ceqsex4v.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | ceqsex4v.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | ceqsex4v.3 | ⊢ 𝐶  ∈  V | 
						
							| 4 |  | ceqsex4v.4 | ⊢ 𝐷  ∈  V | 
						
							| 5 |  | ceqsex4v.7 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 6 |  | ceqsex4v.8 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 7 |  | ceqsex4v.9 | ⊢ ( 𝑧  =  𝐶  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 8 |  | ceqsex4v.10 | ⊢ ( 𝑤  =  𝐷  →  ( 𝜃  ↔  𝜏 ) ) | 
						
							| 9 |  | 19.42vv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) )  ↔  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 )  ↔  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 ) ) ) | 
						
							| 11 |  | df-3an | ⊢ ( ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 )  ↔  ( ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 ) ) | 
						
							| 12 | 11 | anbi2i | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) )  ↔  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 ) ) ) | 
						
							| 13 | 10 12 | bitr4i | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 )  ↔  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) ) ) | 
						
							| 14 | 13 | 2exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) ) ) | 
						
							| 15 |  | df-3an | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) )  ↔  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) ) ) | 
						
							| 16 | 9 14 15 | 3bitr4i | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) ) ) | 
						
							| 17 | 16 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 )  ↔  ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) ) ) | 
						
							| 18 | 5 | 3anbi3d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 )  ↔  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜓 ) ) ) | 
						
							| 19 | 18 | 2exbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜓 ) ) ) | 
						
							| 20 | 6 | 3anbi3d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜓 )  ↔  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜒 ) ) ) | 
						
							| 21 | 20 | 2exbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜓 )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜒 ) ) ) | 
						
							| 22 | 1 2 19 21 | ceqsex2v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜑 ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜒 ) ) | 
						
							| 23 | 3 4 7 8 | ceqsex2v | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷  ∧  𝜒 )  ↔  𝜏 ) | 
						
							| 24 | 17 22 23 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  ( 𝑧  =  𝐶  ∧  𝑤  =  𝐷 )  ∧  𝜑 )  ↔  𝜏 ) |