Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex6v.1 |
⊢ 𝐴 ∈ V |
2 |
|
ceqsex6v.2 |
⊢ 𝐵 ∈ V |
3 |
|
ceqsex6v.3 |
⊢ 𝐶 ∈ V |
4 |
|
ceqsex6v.4 |
⊢ 𝐷 ∈ V |
5 |
|
ceqsex6v.5 |
⊢ 𝐸 ∈ V |
6 |
|
ceqsex6v.6 |
⊢ 𝐹 ∈ V |
7 |
|
ceqsex6v.7 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
8 |
|
ceqsex6v.8 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
9 |
|
ceqsex6v.9 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
10 |
|
ceqsex6v.10 |
⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) |
11 |
|
ceqsex6v.11 |
⊢ ( 𝑣 = 𝐸 → ( 𝜏 ↔ 𝜂 ) ) |
12 |
|
ceqsex6v.12 |
⊢ ( 𝑢 = 𝐹 → ( 𝜂 ↔ 𝜁 ) ) |
13 |
|
3anass |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
14 |
13
|
3exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
15 |
|
19.42vvv |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
17 |
16
|
3exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
18 |
7
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ) ) |
19 |
18
|
3exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ) ) |
20 |
8
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ↔ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ) ) |
21 |
20
|
3exbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ) ) |
22 |
9
|
anbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ↔ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ) ) |
23 |
22
|
3exbidv |
⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ) ) |
24 |
1 2 3 19 21 23
|
ceqsex3v |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ) |
25 |
4 5 6 10 11 12
|
ceqsex3v |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ↔ 𝜁 ) |
26 |
24 25
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ↔ 𝜁 ) |
27 |
17 26
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ 𝜁 ) |