Metamath Proof Explorer


Theorem ceqsexg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypotheses ceqsexg.1 𝑥 𝜓
ceqsexg.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsexg ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsexg.1 𝑥 𝜓
2 ceqsexg.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 nfe1 𝑥𝑥 ( 𝑥 = 𝐴𝜑 )
4 3 1 nfbi 𝑥 ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )
5 ceqex ( 𝑥 = 𝐴 → ( 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
6 5 2 bibi12d ( 𝑥 = 𝐴 → ( ( 𝜑𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) ) )
7 biid ( 𝜑𝜑 )
8 4 6 7 vtoclg1f ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )