Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsexg
Metamath Proof Explorer
Description: A representation of explicit substitution of a class for a variable,
inferred from an implicit substitution hypothesis. (Contributed by NM , 11-Oct-2004)
Ref
Expression
Hypotheses
ceqsexg.1
⊢ Ⅎ 𝑥 𝜓
ceqsexg.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
Assertion
ceqsexg
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
ceqsexg.1
⊢ Ⅎ 𝑥 𝜓
2
ceqsexg.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
3
nfe1
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 )
4
3 1
nfbi
⊢ Ⅎ 𝑥 ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 )
5
ceqex
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) )
6
5 2
bibi12d
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) )
7
biid
⊢ ( 𝜑 ↔ 𝜑 )
8
4 6 7
vtoclg1f
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) )