Metamath Proof Explorer


Theorem ceqsexgv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996) Drop ax-10 and ax-12 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis ceqsexgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsexgv ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsexgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
3 2 1 cgsexg ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )