Metamath Proof Explorer


Theorem ceqsexgvOLD

Description: Obsolete version of ceqsexgv as of 1-Dec-2023. (Contributed by NM, 29-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ceqsexgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsexgvOLD ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsexgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 nfv 𝑥 𝜓
3 2 1 ceqsexg ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )