Metamath Proof Explorer


Theorem ceqsexv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) Avoid ax-12 . (Revised by Gino Giotto, 12-Oct-2024) (Proof shortened by Wolf Lammen, 22-Jan-2025)

Ref Expression
Hypotheses ceqsexv.1 𝐴 ∈ V
ceqsexv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsexv ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 ceqsexv.1 𝐴 ∈ V
2 ceqsexv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 alinexa ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
4 2 notbid ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
5 1 4 ceqsalv ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ 𝜓 )
6 3 5 bitr3i ( ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ¬ 𝜓 )
7 6 con4bii ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )