Metamath Proof Explorer


Theorem ceqsexvOLD

Description: Obsolete version of ceqsexv as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ceqsexvOLD.1 𝐴 ∈ V
ceqsexvOLD.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsexvOLD ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 ceqsexvOLD.1 𝐴 ∈ V
2 ceqsexvOLD.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 nfv 𝑥 𝜓
4 3 1 2 ceqsex ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )