| Step |
Hyp |
Ref |
Expression |
| 1 |
|
biimt |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 3 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 4 |
3
|
pm5.32ri |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
| 5 |
4
|
imbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ) |
| 6 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 7 |
|
impexp |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 8 |
5 6 7
|
3bitr3i |
⊢ ( ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 10 |
|
19.21v |
⊢ ( ∀ 𝑥 ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 11 |
2 9 10
|
3bitrri |
⊢ ( ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 |
1 11
|
bitrdi |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 14 |
|
ceqsalt |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 15 |
13 14
|
bitr3d |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |