Metamath Proof Explorer


Theorem ceqsralt

Description: Restricted quantifier version of ceqsalt . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Assertion ceqsralt ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝐵 ) → ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥 = 𝐴𝜑 ) ) )
2 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
3 2 pm5.32ri ( ( 𝑥𝐵𝑥 = 𝐴 ) ↔ ( 𝐴𝐵𝑥 = 𝐴 ) )
4 3 imbi1i ( ( ( 𝑥𝐵𝑥 = 𝐴 ) → 𝜑 ) ↔ ( ( 𝐴𝐵𝑥 = 𝐴 ) → 𝜑 ) )
5 impexp ( ( ( 𝑥𝐵𝑥 = 𝐴 ) → 𝜑 ) ↔ ( 𝑥𝐵 → ( 𝑥 = 𝐴𝜑 ) ) )
6 impexp ( ( ( 𝐴𝐵𝑥 = 𝐴 ) → 𝜑 ) ↔ ( 𝐴𝐵 → ( 𝑥 = 𝐴𝜑 ) ) )
7 4 5 6 3bitr3i ( ( 𝑥𝐵 → ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝐴𝐵 → ( 𝑥 = 𝐴𝜑 ) ) )
8 7 albii ( ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥 = 𝐴𝜑 ) ) ↔ ∀ 𝑥 ( 𝐴𝐵 → ( 𝑥 = 𝐴𝜑 ) ) )
9 19.21v ( ∀ 𝑥 ( 𝐴𝐵 → ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
10 1 8 9 3bitri ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
11 10 a1i ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝐵 ) → ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) ) )
12 biimt ( 𝐴𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) ) )
13 12 3ad2ant3 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) ) )
14 ceqsalt ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
15 11 13 14 3bitr2d ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝐵 ) → ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )