Description: Obsolete version of ceqsalv as of 8-Sep-2024. (Contributed by NM, 21-Jun-2013) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ceqsralv.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | ceqsralvOLD | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsralv.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
3 | 1 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
4 | ceqsralt | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) | |
5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |