Metamath Proof Explorer


Theorem ceqsrex2v

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005)

Ref Expression
Hypotheses ceqsrex2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ceqsrex2v.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion ceqsrex2v ( ( 𝐴𝐶𝐵𝐷 ) → ( ∃ 𝑥𝐶𝑦𝐷 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ceqsrex2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 ceqsrex2v.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 anass ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵𝜑 ) ) )
4 3 rexbii ( ∃ 𝑦𝐷 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑦𝐷 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵𝜑 ) ) )
5 r19.42v ( ∃ 𝑦𝐷 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜑 ) ) )
6 4 5 bitri ( ∃ 𝑦𝐷 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜑 ) ) )
7 6 rexbii ( ∃ 𝑥𝐶𝑦𝐷 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥𝐶 ( 𝑥 = 𝐴 ∧ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜑 ) ) )
8 1 anbi2d ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵𝜑 ) ↔ ( 𝑦 = 𝐵𝜓 ) ) )
9 8 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜑 ) ↔ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜓 ) ) )
10 9 ceqsrexv ( 𝐴𝐶 → ( ∃ 𝑥𝐶 ( 𝑥 = 𝐴 ∧ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜑 ) ) ↔ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜓 ) ) )
11 7 10 bitrid ( 𝐴𝐶 → ( ∃ 𝑥𝐶𝑦𝐷 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜓 ) ) )
12 2 ceqsrexv ( 𝐵𝐷 → ( ∃ 𝑦𝐷 ( 𝑦 = 𝐵𝜓 ) ↔ 𝜒 ) )
13 11 12 sylan9bb ( ( 𝐴𝐶𝐵𝐷 ) → ( ∃ 𝑥𝐶𝑦𝐷 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜒 ) )