| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ceqsrex2v.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | ceqsrex2v.2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | anass | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐷 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐷 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 5 |  | r19.42v | ⊢ ( ∃ 𝑦  ∈  𝐷 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  =  𝐴  ∧  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑦  ∈  𝐷 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐶 ∃ 𝑦  ∈  𝐷 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝜑 )  ↔  ∃ 𝑥  ∈  𝐶 ( 𝑥  =  𝐴  ∧  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 8 | 1 | anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  ( 𝑦  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 10 | 9 | ceqsrexv | ⊢ ( 𝐴  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝐶 ( 𝑥  =  𝐴  ∧  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 11 | 7 10 | bitrid | ⊢ ( 𝐴  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝐶 ∃ 𝑦  ∈  𝐷 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 12 | 2 | ceqsrexv | ⊢ ( 𝐵  ∈  𝐷  →  ( ∃ 𝑦  ∈  𝐷 ( 𝑦  =  𝐵  ∧  𝜓 )  ↔  𝜒 ) ) | 
						
							| 13 | 11 12 | sylan9bb | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( ∃ 𝑥  ∈  𝐶 ∃ 𝑦  ∈  𝐷 ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝜑 )  ↔  𝜒 ) ) |