| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ceqsrexv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 3 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 5 |
4
|
pm5.32ri |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 6 |
5
|
bicomi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 7 |
6
|
baib |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 8 |
7
|
rexbiia |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 9 |
1
|
ceqsrexv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| 10 |
9
|
pm5.32i |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| 11 |
2 8 10
|
3bitr3i |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |