Metamath Proof Explorer


Theorem cesare

Description: "Cesare", one of the syllogisms of Aristotelian logic. No ph is ps , and all ch is ps , therefore no ch is ph . In Aristotelian notation, EAE-2: PeM and SaM therefore SeP. Related to celarent . (Contributed by David A. Wheeler, 27-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses cesare.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
cesare.min 𝑥 ( 𝜒𝜓 )
Assertion cesare 𝑥 ( 𝜒 → ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 cesare.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
2 cesare.min 𝑥 ( 𝜒𝜓 )
3 con2 ( ( 𝜑 → ¬ 𝜓 ) → ( 𝜓 → ¬ 𝜑 ) )
4 3 alimi ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ∀ 𝑥 ( 𝜓 → ¬ 𝜑 ) )
5 1 4 ax-mp 𝑥 ( 𝜓 → ¬ 𝜑 )
6 5 2 celarent 𝑥 ( 𝜒 → ¬ 𝜑 )