Metamath Proof Explorer


Theorem cesaro

Description: "Cesaro", one of the syllogisms of Aristotelian logic. No ph is ps , all ch is ps , and ch exist, therefore some ch is not ph . In Aristotelian notation, EAO-2: PeM and SaM therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses cesaro.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
cesaro.min 𝑥 ( 𝜒𝜓 )
cesaro.e 𝑥 𝜒
Assertion cesaro 𝑥 ( 𝜒 ∧ ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 cesaro.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
2 cesaro.min 𝑥 ( 𝜒𝜓 )
3 cesaro.e 𝑥 𝜒
4 1 2 cesare 𝑥 ( 𝜒 → ¬ 𝜑 )
5 3 4 barbarilem 𝑥 ( 𝜒 ∧ ¬ 𝜑 )