Step |
Hyp |
Ref |
Expression |
1 |
|
cfub |
⊢ ( cf ‘ ∅ ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } |
2 |
|
0ss |
⊢ ∅ ⊆ ∪ 𝑦 |
3 |
2
|
biantru |
⊢ ( 𝑦 ⊆ ∅ ↔ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) |
4 |
|
ss0b |
⊢ ( 𝑦 ⊆ ∅ ↔ 𝑦 = ∅ ) |
5 |
3 4
|
bitr3i |
⊢ ( ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ↔ 𝑦 = ∅ ) |
6 |
5
|
anbi1ci |
⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) ↔ ( 𝑦 = ∅ ∧ 𝑥 = ( card ‘ 𝑦 ) ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 = ∅ ∧ 𝑥 = ( card ‘ 𝑦 ) ) ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( card ‘ 𝑦 ) = ( card ‘ ∅ ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 = ∅ → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ ∅ ) ) ) |
11 |
8 10
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = ∅ ∧ 𝑥 = ( card ‘ 𝑦 ) ) ↔ 𝑥 = ( card ‘ ∅ ) ) |
12 |
|
card0 |
⊢ ( card ‘ ∅ ) = ∅ |
13 |
12
|
eqeq2i |
⊢ ( 𝑥 = ( card ‘ ∅ ) ↔ 𝑥 = ∅ ) |
14 |
7 11 13
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) ↔ 𝑥 = ∅ ) |
15 |
14
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = { 𝑥 ∣ 𝑥 = ∅ } |
16 |
|
df-sn |
⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } |
17 |
15 16
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = { ∅ } |
18 |
17
|
inteqi |
⊢ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = ∩ { ∅ } |
19 |
8
|
intsn |
⊢ ∩ { ∅ } = ∅ |
20 |
18 19
|
eqtri |
⊢ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = ∅ |
21 |
1 20
|
sseqtri |
⊢ ( cf ‘ ∅ ) ⊆ ∅ |
22 |
|
ss0b |
⊢ ( ( cf ‘ ∅ ) ⊆ ∅ ↔ ( cf ‘ ∅ ) = ∅ ) |
23 |
21 22
|
mpbi |
⊢ ( cf ‘ ∅ ) = ∅ |