Step |
Hyp |
Ref |
Expression |
1 |
|
cfcoflem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |
2 |
1
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) |
3 |
|
cff1 |
⊢ ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
4 |
|
f1f |
⊢ ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 → 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ) |
5 |
4
|
anim1i |
⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) → ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
6 |
5
|
eximi |
⊢ ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
7 |
3 6
|
syl |
⊢ ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
8 |
|
eqid |
⊢ ( 𝑦 ∈ ( cf ‘ 𝐴 ) ↦ ∩ { 𝑣 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ 𝑣 ) } ) = ( 𝑦 ∈ ( cf ‘ 𝐴 ) ↦ ∩ { 𝑣 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ 𝑣 ) } ) |
9 |
8
|
coftr |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) ) ) |
10 |
7 9
|
syl5com |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) ) ) |
11 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
12 |
|
cfon |
⊢ ( cf ‘ 𝐴 ) ∈ On |
13 |
|
eqid |
⊢ { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } |
14 |
|
eqid |
⊢ ∩ { 𝑐 ∈ ( cf ‘ 𝐴 ) ∣ 𝑟 ⊆ ( ℎ ‘ 𝑐 ) } = ∩ { 𝑐 ∈ ( cf ‘ 𝐴 ) ∣ 𝑟 ⊆ ( ℎ ‘ 𝑐 ) } |
15 |
|
eqid |
⊢ OrdIso ( E , { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } ) = OrdIso ( E , { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } ) |
16 |
13 14 15
|
cofsmo |
⊢ ( ( Ord 𝐵 ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) → ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) ) |
17 |
11 12 16
|
sylancl |
⊢ ( 𝐵 ∈ On → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) → ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) ) |
18 |
12
|
onsuci |
⊢ suc ( cf ‘ 𝐴 ) ∈ On |
19 |
18
|
oneli |
⊢ ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → 𝑐 ∈ On ) |
20 |
|
cfflb |
⊢ ( ( 𝐵 ∈ On ∧ 𝑐 ∈ On ) → ( ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) ) |
21 |
19 20
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) → ( ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) ) |
22 |
|
3simpb |
⊢ ( ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) |
23 |
22
|
eximi |
⊢ ( ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) |
24 |
21 23
|
impel |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) |
25 |
|
onsssuc |
⊢ ( ( 𝑐 ∈ On ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( 𝑐 ⊆ ( cf ‘ 𝐴 ) ↔ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ) |
26 |
19 12 25
|
sylancl |
⊢ ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → ( 𝑐 ⊆ ( cf ‘ 𝐴 ) ↔ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ) |
27 |
26
|
ibir |
⊢ ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → 𝑐 ⊆ ( cf ‘ 𝐴 ) ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) → 𝑐 ⊆ ( cf ‘ 𝐴 ) ) |
29 |
24 28
|
sstrd |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) |
30 |
29
|
rexlimdva2 |
⊢ ( 𝐵 ∈ On → ( ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) ) |
31 |
17 30
|
syld |
⊢ ( 𝐵 ∈ On → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) ) |
32 |
10 31
|
sylan9 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) |
34 |
2 33
|
eqssd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) |
35 |
34
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) ) |