Metamath Proof Explorer


Theorem cfcof

Description: If there is a cofinal map from A to B , then they have the same cofinality. This was used as Definition 11.1 of TakeutiZaring p. 100, who defines an equivalence relation cof ( A , B ) and defines our cf ( B ) as the minimum B such that cof ( A , B ) . (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Assertion cfcof ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cfcoflem ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) )
2 1 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) )
3 cff1 ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) )
4 f1f ( 𝑔 : ( cf ‘ 𝐴 ) –1-1𝐴𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 )
5 4 anim1i ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) → ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) )
6 5 eximi ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) )
7 3 6 syl ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) )
8 eqid ( 𝑦 ∈ ( cf ‘ 𝐴 ) ↦ { 𝑣𝐵 ∣ ( 𝑔𝑦 ) ⊆ ( 𝑓𝑣 ) } ) = ( 𝑦 ∈ ( cf ‘ 𝐴 ) ↦ { 𝑣𝐵 ∣ ( 𝑔𝑦 ) ⊆ ( 𝑓𝑣 ) } )
9 8 coftr ( ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) → ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠𝐴𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔𝑡 ) ) → ∃ ( : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟𝐵𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( 𝑡 ) ) ) )
10 7 9 syl5com ( 𝐴 ∈ On → ( ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) → ∃ ( : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟𝐵𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( 𝑡 ) ) ) )
11 eloni ( 𝐵 ∈ On → Ord 𝐵 )
12 cfon ( cf ‘ 𝐴 ) ∈ On
13 eqid { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡𝑥 ( 𝑡 ) ∈ ( 𝑥 ) } = { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡𝑥 ( 𝑡 ) ∈ ( 𝑥 ) }
14 eqid { 𝑐 ∈ ( cf ‘ 𝐴 ) ∣ 𝑟 ⊆ ( 𝑐 ) } = { 𝑐 ∈ ( cf ‘ 𝐴 ) ∣ 𝑟 ⊆ ( 𝑐 ) }
15 eqid OrdIso ( E , { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡𝑥 ( 𝑡 ) ∈ ( 𝑥 ) } ) = OrdIso ( E , { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡𝑥 ( 𝑡 ) ∈ ( 𝑥 ) } )
16 13 14 15 cofsmo ( ( Ord 𝐵 ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( ∃ ( : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟𝐵𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( 𝑡 ) ) → ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) ) )
17 11 12 16 sylancl ( 𝐵 ∈ On → ( ∃ ( : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟𝐵𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( 𝑡 ) ) → ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) ) )
18 12 onsuci suc ( cf ‘ 𝐴 ) ∈ On
19 18 oneli ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → 𝑐 ∈ On )
20 cfflb ( ( 𝐵 ∈ On ∧ 𝑐 ∈ On ) → ( ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) )
21 19 20 sylan2 ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) → ( ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) )
22 3simpb ( ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) → ( 𝑘 : 𝑐𝐵 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) )
23 22 eximi ( ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) → ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) )
24 21 23 impel ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 )
25 onsssuc ( ( 𝑐 ∈ On ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( 𝑐 ⊆ ( cf ‘ 𝐴 ) ↔ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) )
26 19 12 25 sylancl ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → ( 𝑐 ⊆ ( cf ‘ 𝐴 ) ↔ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) )
27 26 ibir ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → 𝑐 ⊆ ( cf ‘ 𝐴 ) )
28 27 ad2antlr ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) ) → 𝑐 ⊆ ( cf ‘ 𝐴 ) )
29 24 28 sstrd ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) )
30 29 rexlimdva2 ( 𝐵 ∈ On → ( ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟𝐵𝑠𝑐 𝑟 ⊆ ( 𝑘𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) )
31 17 30 syld ( 𝐵 ∈ On → ( ∃ ( : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟𝐵𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( 𝑡 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) )
32 10 31 sylan9 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) )
33 32 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) )
34 2 33 eqssd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) )
35 34 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤𝐵 𝑧 ⊆ ( 𝑓𝑤 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) )