Step |
Hyp |
Ref |
Expression |
1 |
|
df-cf |
⊢ cf = ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ) |
2 |
|
cardon |
⊢ ( card ‘ 𝑧 ) ∈ On |
3 |
|
eleq1 |
⊢ ( 𝑦 = ( card ‘ 𝑧 ) → ( 𝑦 ∈ On ↔ ( card ‘ 𝑧 ) ∈ On ) ) |
4 |
2 3
|
mpbiri |
⊢ ( 𝑦 = ( card ‘ 𝑧 ) → 𝑦 ∈ On ) |
5 |
4
|
adantr |
⊢ ( ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) → 𝑦 ∈ On ) |
6 |
5
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) → 𝑦 ∈ On ) |
7 |
6
|
abssi |
⊢ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ⊆ On |
8 |
|
cflem |
⊢ ( 𝑥 ∈ On → ∃ 𝑦 ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) ) |
9 |
|
abn0 |
⊢ ( { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) ) |
10 |
8 9
|
sylibr |
⊢ ( 𝑥 ∈ On → { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ≠ ∅ ) |
11 |
|
oninton |
⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ⊆ On ∧ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ≠ ∅ ) → ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ∈ On ) |
12 |
7 10 11
|
sylancr |
⊢ ( 𝑥 ∈ On → ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ∈ On ) |
13 |
1 12
|
fmpti |
⊢ cf : On ⟶ On |