| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-cf | ⊢ cf  =  ( 𝑥  ∈  On  ↦  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) } ) | 
						
							| 2 |  | cardon | ⊢ ( card ‘ 𝑧 )  ∈  On | 
						
							| 3 |  | eleq1 | ⊢ ( 𝑦  =  ( card ‘ 𝑧 )  →  ( 𝑦  ∈  On  ↔  ( card ‘ 𝑧 )  ∈  On ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( 𝑦  =  ( card ‘ 𝑧 )  →  𝑦  ∈  On ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) )  →  𝑦  ∈  On ) | 
						
							| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) )  →  𝑦  ∈  On ) | 
						
							| 7 | 6 | abssi | ⊢ { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ⊆  On | 
						
							| 8 |  | cflem | ⊢ ( 𝑥  ∈  On  →  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) ) | 
						
							| 9 |  | abn0 | ⊢ ( { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ≠  ∅  ↔  ∃ 𝑦 ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝑥  ∈  On  →  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ≠  ∅ ) | 
						
							| 11 |  | oninton | ⊢ ( ( { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ⊆  On  ∧  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ≠  ∅ )  →  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ∈  On ) | 
						
							| 12 | 7 10 11 | sylancr | ⊢ ( 𝑥  ∈  On  →  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑤  ∈  𝑥 ∃ 𝑣  ∈  𝑧 𝑤  ⊆  𝑣 ) ) }  ∈  On ) | 
						
							| 13 | 1 12 | fmpti | ⊢ cf : On ⟶ On |